• Full Time
  • Remote

Website InterosInc Interos

Providing Absolute Certainty in an Interconnected World

Interos, founded by Jennifer Bisceglie, is one of the most transformative technologically advanced platforms that powers the global economy supply chain. By using ML and big data, Interos aspires to dynamically and continuously map all of a company’s business relationships to multiple tiers of dependency on a global scale and endeavors to help customers understand risk in their multi-tier, global supply chains. The scope of this value proposition extends across a variety of different technology sectors including risk management, supply chain intelligence, financial intelligence and cyber-security. Interos has raised $26M in total funding from Venrock, led by Nick Beim, and Kleiner Perkins, led by Ted Schlein. We have doubled in size in 2020 and are planning a similar trajectory in 2021. Our offices are headquartered in Arlington, VA, we have presence in Menlo Park, CA and are hiring across the nation for remote team members.

We need an extraordinary team member who thrives as part of a fast-paced team and takes pride in their ability to succeed while delivering value to our customers. Be challenged by innovation and grow professionally by solving one of the most interesting challenges impacting businesses across the globe. 

THE OPPORTUNITY

Interos is a product-oriented company. We are building the world’s first fully connected knowledge graph of commercial entities to understand global supply chain risk for our customers. The data to do this does not exist, so we are making it.

Interos is looking for a world-class Senior Machine Learning (ML) Ops Engineer to help us design, build, scale, and lead our data and machine learning infrastructure. This role will work closely with dev ops, data science, engineering, and product to ensure we deliver reliable and accurate data on optimal infrastructure to our users who depend on Interos to keep their companies in action.

You want to solve problems for which you can’t just Google answers. You want to deal with real big data in actual products that real people use. You want exposure to cutting edge tech, including machine learning at scale, containerized environments, graph databases, and predictive modeling. And you want it all in a high-growth startup.

The selected applicants will have the opportunity to optimize and expand our infrastructure and organization for model generation, orchestration, deployment, health, diagnostics, and metrics.

Our crack team of software engineers and data analysts are ready and waiting with the best models possible for your team to operationalize on AWS infrastructure.

KEY RESPONSIBILITIES

  • Serve as key technical resource for machine learning engineers, helping them transition their ML models into production environments.
  • Serve as a subject matter expert for Machine Learning Ops, and partner with functional experts across the company to bring that expertise to bear on some of the hardest and most exciting problems in this space.
  • Own production machine learning pipelines for in-house developed supply chain risk models used by some of the biggest enterprises in the world.
  • Develop systems, tools, & processes to monitor ML models in production, monitoring drift and performance and initiating retraining and validation as necessary.
  • Develop systems, tools, & processes to govern ML models for compliance, bias, versioning, traceability and auditability.
  • Work closely with ML Engineers to advise on implementation. Be critical in the path to getting our talented research team’s ideas to market.
  • Recommend and drive architecture/infrastructure to create actionable, meaningful, and scalable solutions for business problems.
  • Establish scalable, efficient, and automated processes for large scale ML model deployments.
  • Manage, monitor, and troubleshoot machine learning infrastructure.

QUALIFICATIONS

  • BS Degree in Computer Sciences (or related technical degree with industry experience).
  • 6+ years of hands-on industry experience.
  • 2+ years of experience deploying robust machine learning APIs in production environments (ideally cloud-based environments such as GCP or AWS) – from model training and versioning to observability and delivery to consumers.
  • 1+ years of experience with Kubernetes.
  • Experience building auto-scaling ML systems.
  • Experience with machine learning lifecycle platforms (MlFlow / Kubeflow)
  • A passion for creating innovative techniques and making these methods robust and scalable.
  • Strong Python programming skills.
  • Experience with databases and data structuring/warehousing.
  • Exposure to machine learning concepts (feature engineering, text classification, and time series prediction) and frameworks with interest in learning more.
  • Strong verbal and written communication skills, including the ability to interact effectively with colleagues of varying technical and non-technical abilities.
  • Eligibility to obtain a  security clearance is preferred

STUFF THAT REALLY IMPRESSES US:

  • Experience deploying machine learning models using cloud-based solutions such as SageMaker or Azure ML.
  • Familiarity with and ability to train people on deploying to a containerized environment.
  • Production experience with serverless platforms such as AWS Lambda or Google Cloud Functions.
  • Contributions to open source projects.
  • Great sense of humor.
  • Positive, good-natured, and generally pleasant to be around.
  • Demonstrated commitment to building a diverse and inclusive culture.
  • A sense of adventure.

BENEFITS

  • Comprehensive Health & Wellness package (Medical, Dental and Vision)
  • 10 Paid Holiday Days Off
  • Accrued Paid Time Off (PTO)
  • 401(k) Employer Matching
  • Stock Options
  • Career advancement opportunities
  • Casual Dress
  • On-site gym and dedicated Peloton room at headquarters
  • Company Events (Sports Games, Fitness Competitions, Birthday Celebrations, Contests, Happy Hours)
  • Annual company party
  • Employee Referral Program

Interos is proud to be an Equal Opportunity Employer and will consider all qualified applicants without regard to race, color, age, religion, sex, sexual orientation, gender identity, genetic information, national origin, disability, protected veteran status or any other classification protected by law.

If you are a candidate in need of assistance or an accommodation in the application process, please contact HR@interos.ai

To apply for this job please visit www.interos.ai.